25 research outputs found

    Optimizing transport logistics under uncertainty with simheuristics: concepts, review and trends

    Get PDF
    Background: Uncertainty conditions have been increasingly considered in optimization problems arising in real-life transportation and logistics activities. Generally, the analysis of complex systems in these non-deterministic environments is approached with simulation techniques. However, simulation is not an optimization tool. Hence, it must be combined with optimization methods when our goal is to: (i) minimize operating costs while guaranteeing a given quality of service; or (ii) maximize system performance using limited resources. When solving NP-hard optimization problems, the use of metaheuristics allows us to deal with large-scale instances in reasonable computation times. By adding a simulation layer to the metaheuristics, the methodology becomes a simheuristic, which allows the optimization element to solve scenarios under uncertainty. Methods: This paper reviews the indexed documents in Elsevier Scopus database of both initial as well as recent applications of simheuristics in the logistics and transportation field. The paper also discusses open research lines in this knowledge area. Results: The simheuristics approaches to solving NP-hard and large-scale combinatorial optimization problems under uncertainty scenarios are discussed, as they frequently appear in real-life applications in logistics and transportation activities. Conclusions: The way in which the different simheuristic components interact puts a special emphasis in the different stages that can contribute to make the approach more efficient from a computational perspective. There are several lines of research that are still open in the field of simheuristics.Peer ReviewedPostprint (published version

    A Fuzzy Simheuristic for the Permutation Flow Shop Problem under Stochastic and Fuzzy Uncertainty

    Get PDF
    [EN] Stochastic, as well as fuzzy uncertainty, can be found in most real-world systems. Considering both types of uncertainties simultaneously makes optimization problems incredibly challenging. In this paper, we analyze the permutation flow shop problem (PFSP) with both stochastic and fuzzy processing times. The main goal is to find the solution (permutation of jobs) that minimizes the expected makespan. However, due to the existence of uncertainty, other characteristics of the solution are also taken into account. In particular, we illustrate how survival analysis can be employed to enrich the probabilistic information given to decision-makers. To solve the aforementioned optimization problem, we extend the concept of a simheuristic framework so it can also include fuzzy elements. Hence, both stochastic and fuzzy uncertainty are simultaneously incorporated in the PFSP. In order to test our approach, classical PFSP instances have been adapted and extended, so that processing times become either stochastic or fuzzy. The experimental results show the effectiveness of the proposed approach when compared with more traditional ones.This work has been partially supported by the Spanish Ministry of Science (PID2019111100RB-C21/AEI/10.13039/501100011033), as well as by the Barcelona Council and the "la Caixa" Foundation under the framework of the Barcelona Science Plan 2020-2023 (grant 21S09355-001).Castaneda, J.; Martín, XA.; Ammouriova, M.; Panadero, J.; Juan-Pérez, ÁA. (2022). A Fuzzy Simheuristic for the Permutation Flow Shop Problem under Stochastic and Fuzzy Uncertainty. Mathematics. 10(10):1-17. https://doi.org/10.3390/math10101760117101

    Battery sharing: a feasibility analysis through simulation

    Get PDF
    Nowadays, several alternatives to internal combustion engines are being proposed in order to reduce CO2 emissions in freight transportation and citizen mobility. According to many experts, the use of electric vehicles constitutes one of the most promising alternatives for achieving the desirable reductions in emissions. However, popularization of these vehicles is being slowed by long recharging times and the low availability of recharging stations. One possible solution to this issue is to employ the concept of battery sharing or battery swapping. This concept is supported by important industrial partners, such as Eni in Italy, Ample in the US, and Shell in the UK. This paper supports the introduction of battery swapping practices by analyzing their effects. A discrete-event simulation model is employed for this study. The obtained results show that battery sharing practices are not just a more environmentally and socially friendly solution, but also one that can be highly beneficial for reducing traffic congestion.Postprint (published version

    A biased-randomized simheuristic for a hybrid flow shop with stochastic processing times in the semiconductor industry

    Get PDF
    © 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting /republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksCompared to other industries, production systems in semiconductor manufacturing have an above-average level of complexity. Developments in recent decades document increasing product diversity, smaller batch sizes, and a rapidly changing product range. At the same time, the interconnections between equipment groups increase due to rising automation, thus making production planning and control more difficult. This paper discusses a hybrid flow shop problem with realistic constraints, such as stochastic processing times and priority constraints. The primary goal of this paper is to find a solution set (permutation of jobs) that minimizes the production makespan. The proposed algorithm extends our previous work by combining biased-randomization techniques with a discrete-event simulation heuristic. This simulation-optimization approach allows us to efficiently model dependencies caused by batching and by the existence of different flow paths. As shown in a series of numerical experiments, our methodology can achieve promising results even when stochastic processing times are considered.Peer ReviewedPostprint (author's final draft

    Optimizing energy consumption in smart cities’ mobility: electric vehicles, algorithms, and collaborative economy

    Get PDF
    Mobility and transportation activities in smart cities require an increasing amount of energy. With the frequent energy crises arising worldwide and the need for a more sustainable and environmental friendly economy, optimizing energy consumption in these growing activities becomes a must. This work reviews the latest works in this matter and discusses several challenges that emerge from the aforementioned social and industrial demands. The paper analyzes how collaborative concepts and the increasing use of electric vehicles can contribute to reduce energy consumption practices, as well as intelligent x-heuristic algorithms that can be employed to achieve this fundamental goal. In addition, the paper analyzes computational results from previous works on mobility and transportation in smart cities applying x-heuristics algorithms. Finally, a novel computational experiment, involving a ridesharing example, is carried out to illustrate the benefits that can be obtained by employing these algorithms.Peer ReviewedPostprint (published version

    Biased-Randomized Discrete-Event heuristics for dynamic optimization with time dependencies and synchronization

    Get PDF
    Many real-life combinatorial optimization problems are subject to a high degree of dynamism, while, simultaneously, a certain level of synchronization among agents and events is required. Thus, for instance, in ride-sharing operations, the arrival of vehicles at pick-up points needs to be synchronized with the times at which users reach these locations so that waiting times do not represent an issue. Likewise, in warehouse logistics, the availability of automated guided vehicles at an entry point needs to be synchronized with the arrival of new items to be stored. In many cases, as operational decisions are made, a series of interdependent events are scheduled for the future, thus making the synchronization task one that traditional optimization methods cannot handle easily. On the contrary, discrete-event simulation allows for processing a complex list of scheduled events in a natural way, although the optimization component is missing here. This paper discusses a hybrid approach in which a heuristic is driven by a list of discrete events and then extended into a biased-randomized algorithm. As the paper discusses in detail, the proposed hybrid approach allows us to efficiently tackle optimization problems with complex synchronization issuesPeer ReviewedPostprint (published version

    Internet of Vehicles and Real-Time Optimization Algorithms: Concepts for Vehicle Networking in Smart Cities

    Get PDF
    Achieving sustainable freight transport and citizens’ mobility operations in modern cities are becoming critical issues for many governments. By analyzing big data streams generated through IoT devices, city planners now have the possibility to optimize traffic and mobility patterns. IoT combined with innovative transport concepts as well as emerging mobility modes (e.g., ridesharing and carsharing) constitute a new paradigm in sustainable and optimized traffic operations in smart cities. Still, these are highly dynamic scenarios, which are also subject to a high uncertainty degree. Hence, factors such as real-time optimization and re-optimization of routes, stochastic travel times, and evolving customers’ requirements and traffic status also have to be considered. This paper discusses the main challenges associated with Internet of Vehicles (IoV) and vehicle networking scenarios, identifies the underlying optimization problems that need to be solved in real time, and proposes an approach to combine the use of IoV with parallelization approaches. To this aim, agile optimization and distributed machine learning are envisaged as the best candidate algorithms to develop efficient transport and mobility systems

    Combining Parallel Computing and Biased Randomization for Solving the Team Orienteering Problem in Real-Time

    Full text link
    [EN] In smart cities, unmanned aerial vehicles and self-driving vehicles are gaining increased concern. These vehicles might utilize ultra-reliable telecommunication systems, Internet-based technologies, and navigation satellite services to locate their customers and other team vehicles to plan their routes. Furthermore, the team of vehicles should serve their customers by specified due date efficiently. Coordination between the vehicles might be needed to be accomplished in real-time in exceptional cases, such as after a traffic accident or extreme weather conditions. This paper presents the planning of vehicle routes as a team orienteering problem. In addition, an 'agile' optimization algorithm is presented to plan these routes for drones and other autonomous vehicles. This algorithm combines an extremely fast biased-randomized heuristic and a parallel computing approach.This work has been partially supported by the Spanish Ministry of Science and Innovation (PID2019-111100RB-C21/AEI/10.13039/501100011033, RED2018-102642-T). We also acknowledge the support of the Erasmus+ Program (2019-I-ES01-KA103-062602)Panadero, J.; Ammouriova, M.; Juan-Pérez, ÁA.; Agustin, A.; Nogal, M.; Serrat, C. (2021). Combining Parallel Computing and Biased Randomization for Solving the Team Orienteering Problem in Real-Time. Applied Sciences. 11(24):1-18. https://doi.org/10.3390/app112412092118112
    corecore